
1

InSAR Scientific Computing Environment

Eric Gurrola, JPL, Giangi Sacco, JPL

Paul A. Rosen, JPL (PI), Howard Zebker, SU

Consulting Collaborators: Mark Simons, Caltech,
Scott Hensley, JPL, David Sandwell, SIO

Students from Stanford: Piyush Shanker and

Cody Wortham

AIST-08-0023

ESTF 2010

2

Objective

•  Requirements defined
•  Architecture designed
•  Stanford University Subcontract in place (finally) to

provide algorithmic developments for accuracy and
additional functionality: time series, persistent
scatterers…

•  Framework recasting of processing engines more
than half finished for ROI_PAC and well under way
for Stanford Code after delays in subcontract

•   Develop an open-source, modular, extensible
InSAR computing environment for the research
community to be able to process Level 0 data to
Level 3 and support their modeling studies.

•   Incorporate state-of-the-art, highly accurate
algorithms to automate InSAR processing for
non-experts and experts alike

•   Document algorithms, formats and interfaces to
facilitate community involvement in continuing
development beyond the AIST horizon

•   Develop community-based requirements for
InSAR processing methods and generalized
data models

•   Develop a modular, extensible, object-
oriented processing framework

•   Develop modules for the ISCE architecture

•   Test and document ISCE framework

Approach

InSAR Scientific Computing Environment

A computation suite that facilitates interaction
with InSAR data and models

Status after First 15 Months

3

ROI_PAC: Legacy InSAR Processing Software

ROI_PAC: Repeat Orbit Interferometry PACkage --- An Interferometric SAR
processing package developed at JPL, Caltech, and Stanford over a decade ago.
Widely used through an Open Channel License by a motivated scientist
community to process raw radar data from two passes over a scene at different
times from a variety of satellites (ERS, JERS, EnviSAT, ALOS), into images,
interferograms, and geocoded topography and Earth displacement maps

Map of Earth Displacement between t1 and t2

t1

t2

ROI_PAC + DEM

4

ROI_PAC: InSAR Processing Flow

5

InSARProc2008

ISCE is designed to be a response to the recommendations coming out of a NASA
supported workshop (InSARProc 2008) convened at Stanford University on July
28-31, 2008. The workshop was attended by leading radar processing experts and
scientists who use radar processing software from around the world.

The specific goals addressed by the workshop were to:
1. Assess strengths of existing InSAR processing non-commercial packages/methods
2. Define needs and capabilities of next-generation processing systems
3. Set standards and structure for new InSAR processor development

Sponsorship: InSARProc 2008 was endorsed by NASA's DESDynI Steering
Committee and sponsored jointly by NASA’s Earth Surface and Interior Program and
by the Stanford Center for Computational Earth & Environmental Science (CEES).

The next InSARPROC Workshop is being scheduled for late 2010 in Southern
California and will unveil an alpha version of ISCE.

6

InSARProc2008 Recommendations

The high-level guidelines and recommendations coming out of InSARProc2008 were
prioritized in two groups:

Highest priority:
•   The next-generation software should be accurate in phase and location
•   The package should be extensible, modular, and efficient
•   The package should be well documented, supported, accessible to all users

Second priority:
•   The software should be portable, thus with a small and light footprint
•   The new codes should be open source in the sense that they should be available to

anyone for inspection, use, modification, and redistribution.
•   The code should be thoroughly tested, debugged, pass benchmarks, and verified.
•   Results should be readily reproducible and repeatable.
•   The package should follow well-defined, standardized products with clear

coordinates.

7

STD_PROC: Improved/Enhanced Processor for ISCE

•   STD_PROC is a new InSAR processing package being developed at Stanford under
the current AIST.

•  STD_PROC overlaps much of the functionality of ROI_PAC but it also extends the
functionality to include time-series analysis methods for analyzing evolution of
displacement fields over time from multiple passes over a scene and to include
persistent scatterer methods to allow interferometric processing in the presence of
low-correlation.

•   STD_PROC borrows from and builds upon the improved processing algorithms
developed for SRTM and UAVSAR InSAR processors.

•   STD_PROC applies a motion compensation algorithm to produce images in a
common geographical coordinate system from the start to facilitate time-series
analysis of interferograms formed from multiple pairings of radar images.

•   STD_PROC is more efficient and much faster through the use of improved
algorithms and the use of OpenMP

8

Key Drivers of the ISCE Architecture

Key drivers of the ISCE architecture:

1. Preserve the vast expertise and testing currently encoded in Legacy Software
including both ROI_PAC and STD_PROC.

2. Make that Legacy Software more lean in terms of the number of auxiliary tasks it
needs to do (such as self configuration and I/O configuration).

3. Build modern object oriented structures around and behind the legacy code to
manage that code and push rather than pull user configuration onto that code before
execution.

4. Implement common functions and services such as I/O through APIs to allow their
implementations to change and to allow for user configuration and selection of those
functions at run-time.

5. Build in polymorphism mechanisms to allow user selections to alter the
implementations of major processing steps and common functions. Also allows just-
in-time insertion of alternative functions and major components

9

Some Characteristics of the Legacy Software

•   Large monolithic “main” programs written mostly in Fortran with some C strung together
with serial, task-oriented scripts written in Perl (ROI_PAC) or Python (STD_PROC).
•   The scripts “exec” the main programs as separate processes one after the other.
•   Data and information are passed between the various programs through external binary or
text files.
•   Often default control parameters and constants are hard-wired deep in the low-levels of the
code in multiple locations and can only be changed by modifying the code and then
management of the possible multiple instances of use of these parameters becomes difficult.
•   Pieces of code are replicated in multiple places both in the low-level processing engines and
in the higher-level scripts.
•   The low-level programs are given the responsibility of opening data files and getting the
data from those files, which binds the low-level programs to the particular external data
storage formats. This requires either reformatting of large amounts of data before starting
processing or else modification of low-level code for the external storage formats that may be
in use at the time.
•   Use of given scripts are simple for non-experts to use when they work properly but use of
individual stages in the processing (for example when the script fails at a particular stage and
debugging of that stage is required) is cumbersome or impossible for the non-expert to do.

10

Restructuring of a Legacy Program for Flexible Data Flow

Restructuring of a legacy program
for data flow:

(a)  Typical flow in a legacy program:
control parameters and data/
standard I/O pulled from sources in
fixed formats. Not configurable at
run-time; inflexible; maintenance
of code when formats change
becomes difficult

(b)   The modified flow in ISCE:
external processes manage
interface to user and data sources;
push control parameters onto the
legacy program before execution
phase begins; provide opaque pipes
for data/standard I/O

11

ISCE Component Architecture

Componentization of a legacy
program:

(a)  Embed the legacy program at the
core of an object-oriented
component written in Python.

(b) Provide complete management of
the core component through its
life-cycle from initialization
through proper finalization.
Provide previously unavailable
introspection capability

(c) Provide input and output ports
with well-defined interfaces

(d) Provide well-defined interface for
flow of control parameters from
the user through controlling
applications to the component.

(e) Provide Framework Components
and Properties for common
object definitions and common
tasks.

12

ISCE Architecture

13

ISCE Applications

Application architecture. Applications are special components that contain “main”
methods that replace the functionality provided by the PERL and Python scripts of
ROI_PAC and STD_PROC. They are responsible for gathering user inputs, instantiating
components and managing the execution of those components. The blue people indicate
points where the user selects input parameters through input files and the command line as
well as the components that are instantiated for a particular run.

14

ISCE Features: Polymorphism

•   A key feature of ISCE that is meant to satisfy the requirements for flexibility and
extensibility is the runtime polymorphism that we have built into ISCE.

•   Runtime Polymorphism is a software mechanism to significantly alter the behavior of the
software at runtime through user inputs without requiring the software to be recompiled.
•   Through object-oriented principles, interfaces and tasks can be defined in the software
components while deferring the instantiation of the concrete software objects that will
implement the tasks until run-time when user inputs can be used in helping to decide which
objects are appropriate or preferred for the given task for a particular processing run.

•  We allow for two types of polymorphism:
(1)  Facility polymorphism where major components may be morphed at run-time. Facilities

define a task and an interface that are implemented by a component. Registering a
Component as a Facility indicates the Component as the default Component to
implement the Facility but also alerts the Application to allow the User to specify an
alternate Component at run-time to implement the Facility.

(2) Plug-in type of polymorphism where lower level, common functions such as
implementations of fast Fourier transforms (FFTs) may be selected across the board at
run-time.

15

ISCE Features: Provenance

•   To satisfy the requirement for well-documented products and for reproducibility of those
products ISCE provides mechanisms to preserve the provenance of every data file produced
by ISCE. Provenance refers to the pedigree of a particular piece of processed data which
ISCE preserves in meta-data for data products as well as in a database of ISCE software
configuration and usage.
•   Versions of applications, components, and other software that were used to produce a data
product as well as the configuration parameters used to initialize those applications and
components as well as the provenance of the input data and other output data products at
the time of creation of the data product of interest are all preserved.
•   Provenance will allow an investigator to enter into an exploratory mode of processing his
data in which he might try different versions of the software or perhaps iteratively tweak
parameters to produce optimal data products while keeping a record of what he has tried at
every point in his exploration so that he could reproduce any of the results that he produced
at any time during his exploration.
•   Provenance also allows users to create a record of what was done to the data that can be
shared with the community in the form of publications or scripts, such that processing
results are reproducible, which is an important aspect of scientific discovery and
refinement.

16

ISCE Features: APIs

•   Image API provides a set of library functions that provide the legacy software and new
programs developed by users with a reliable and versatile way of performing input and
output operations on images. The image API consists of a set of C++ classes that contain an
abstraction of a real world image as well as concrete methods to access data from sources
(such as, but not limited to, files on disc) and a memory buffer to hold a given portion of an
image that can be passed between the C++ and Fortran programs. The C++ classes allow
for very general and flexible configuration of the objects instantiated from them without
specific regard for the types of images and memory buffer specifications currently in the
Fortran programs of ROI_PAC and STD_PROC.
•   Control API consists of a set of classes, features and methodologies that the ISCE
framework utilizes to guarantee an easy, correct, reproducible, extensible and
reconfigurable way of passing data among the different computing modules. The control
API provides methods for setting, validating, and introspecting the control parameters of a
low-level processing engine that was not previously available.
•   StdOE API consists in a C++ static class used to handle standard Output/Error messages
that is run-time configurable so that the destinations for logging messages from the low-
level processing engines, for example, can be selected, or can be turned on or off, at run-
time.

17

Conclusion

•   An alpha version of ISCE is planned to be unveiled at the 2nd InSARProc Workshop to be
held in late 2010 in Southern California. Radar processing experts and scientist users will
be invited to discuss developments in InSAR processing since the Stanford 2008
Workshop. ISCE will be demonstrated and the community will try it out during the
workshop and provide valuable feedback.

•   A beta version of ISCE with full integration of ROI_PAC and STD_PROC software and
fleshed-out framework support components to be completed by mid 2011 in time for the
testing, bug-fixing, and documenting phase to follow into early 2012.

•  Thank you for listening!

