
Autonomous, On-board Processing for
Sensor Systems:

High Performance Fault Tolerant
Techniques

Matthew French, JP Walters, Mark Bucciero – USC /
ISI

Tom Flatley – NASA GSFC
June 23rd, 2010

FPGAs in Space
Background

Field Programmable Gate Arrays (FPGAs) provide near
Application Specific Integrated Circuit (ASIC) performance
while being reprogrammable
—   Resource Multiplexing

  Multi-mission, multi-sensor
—  Mission Obsolescence

  Update Algorithms
—  Design Flaws

  Correct in Orbit
Static Random Access Memory (SRAM) based FPGAs are now

common in space based systems
—   Research such as that on the Reconfigurable Hardware in Orbit (RHinO)

NASA AIST-03 project developed Radiation Hardening By Software
(RHBSW) techniques to mitigate Single Event Upsets in commercial
grade devices (COTS)

—   10-100x Processing Performance over Anti-fuse FPGAs
2

FPGAs Today

FPGAs have evolved, becoming heterogeneous
—   PowerPC processors, Ethernet cores, Giga-bit transceivers

FPGA Embedded PowerPC outperforms radiation hardened
RISC processors

Legacy features
(known mitigation
techniques)

New
features

Xilinx V5FXT Datasheet

Can RHBSW techniques be developed for new Hard IP Resources?
How can these features be leveraged to address autonomy?

Processor
 Mongoose V
 RAD6000
 RAD750
 Virtex4
PPC405

Virtex 5
PPC440

Dhrystone MIPS
 8
 35
 260
 900
 2,200

Existing Embedded PPC
Fault Tolerance Approaches

Problem: PowerPC state is not readable from the
bitstream like all traditional FPGA circuitry

•   Configuration scrubbing techniques have limited value
•   Fault injection / emulation not feasible by this method

Quadruple Modular Redundancy
•   2 Devices = 4 PowerPCs
•   Vote on result every clock cycle
•   Fault detection and correction
•   ~300% Overhead

Dual Processor Lock Step
•   Single device solution
•   Error detection only
•   Checkpointing and Rollback to return to last known

safe state
•   100% Overhead
•   Downtime while both processors rolling back

4

New fault tolerance techniques and error insertion methods

must be researched.

Voter

Checkpoint
and Rollback

Controller

QMR Approach

Dual Lock Step Approach

Autonomous, On-board Processing for
Sensor Systems

Key Milestones

√ Initial documentation 5/1/09
√ Manual FT application demo 10/15/09
Automated FT application demo 3/30/10
Autonomous agent simulation demo 10/15/10
Autonomy hardware demo 3/30/11
End-to-end autonomy demo 10/15/12
End-to-end multi-node autonomy demo 3/30/12
Final documentation & report 3/30/12

Co-I’s/Partners
Tom Flatley/GSFC

PI: Matthew French, USC/ISI

TRLcurrent = 3 TRLin = 3

Approach
Phase I: Fault Tolerance

— Develop HPC fault techniques and tools for Virtex4FX
— Demonstrate on SAR application

Phase II: Single Node Autonomy
— Extend autonomous architecture to SpaceCube
— Demonstrate node level adaptation on dynamic scenarios

Phase III: Multi-layer Autonomy
— Extend architecture to system level (ground, other nodes)
— Demonstrate end-to-end adaptation

Objective
Fuse high performance reconfigurable processors with
emerging fault-tolerance & autonomous processing techniques
for a 10-100x decrease in processing time.

–   This means more science experiments conducted per day &
more thorough, timely analysis of captured data.

–   Addresses the ability to quickly react & adapt processing
or mission objectives in real-time, by combining
autonomous agents with reconfigurable computing.

–   Enables Autonomous On-board Processing for Sensor
Systems (A-OPSS), via a tool-suite that generates a run-
time system for sensor systems to autonomously detect
changes in collected data & tune processing in a controlled
manner to adapt to unforeseen events.

Decadal Survey Missions: Primary - DESDynl, HyspIRI, GEO-
CAPE; Secondary – SMAP, SWOT Autonomous System Development

Pre-processing Noise Cancellation
Feature Detection

and Extraction

Application
Scheduler

Today’s
Systems

Autonomous System

Pre-processing
Noise Cancellation

Feature Detection
and Extraction

Autonomous
Control

Dynamic Control

Pre-processing
Noise Cancellation

Feature Detection
and Extraction

Static

Legend

Dynamic

Data

Control

Scheduler can update 
processing chain based on 
predetermined routine or 
external events 

Scheduler is upgraded to monitor data heuristics to develop 
situational awareness and enact new processing states / 
algorithms based on observed data 

5

NASA HARDWARE and
APPLICATIONS

6

SpaceCube 1.0

SpaceCube Technology
—  Multi-processing, reconfigurable platform

  2 Xilinx V4FX60 devices
—   Low cost, light weight, moderate power
—   Custom stackable architecture
—  >10x performance increase over existing

flight processors
—  Mechanical:

  7.5-lbs, 5”x5”x7”
—   Power:

  37W (HST RNS Application)

Exploded
SpaceCube

Processor Card

SpaceCube 1.0 Processor Card Details

General: 4”x4” card, Back-to-Back FPGAs (x2), 7W typical power
Memory: 1GB SDRAM, 1GB Flash, 16KB SRAM, 16KB PROM
Interfaces: 20 bi-dir differential signals, JTAG
Backplane: Power, 42 single-ended, 8 LVDM, 2 I2C, POR

8

Xilinx
V4FX60 Xilinx

V4FX60
Aeroflex UT6325

Aeroflex UT6325

SDRAM 256MB
SDRAM

SDRAM 512MB
FLASH

St
ac

ki
ng

Co

nn
ec

to
r

(1
22

 p
in

)

Diff RX
QuadRX

SDRAM 256MB
SDRAM

Diff RX
QuadRX

16K
PROM

16KB
SRAM

LVDM
LVDM

LVDM
LVDM

Diff RX
QuadTX

Diff RX
QuadTX

QuadTX

QuadRX

SpaceCube on MISSE7

Purpose
—   On-orbit “Rad Hard By Software” test platform
—   Collect radiation performance
—   Collaborate

  Demonstrate partners’ technology on-orbit
Capabilities

—   Two SpaceCube processor cards
  Independent experiment units

—   On-orbit reconfiguration
  Uplink compressed data files from the ground

–  new bit files, new PPC code, new microcontroller
code, new data files

—   Bandwidth (small but functional)
  With dedicated access to MISSE7 C&DH box

–  Uplink 106 bytes every 3 sec (~35 bytes/sec)
–  8hrs to uplink 1MB
–  Downlink 1024 bytes every 3sec (~341 bytes/sec)

Flight test opportunities available for
 A-OPSS technology

SpaceCube on MISSE-7
experiment aboard the ISS

PowerPC Sensitive Cross
Section Estimate

Do not have full visibility of PowerPC architecture, however good
estimate can be made from data sheets

Feature Size Fault Injection
Method

Comments

Instruction Cache 16 KB +64
control

Beam

Data Cache 16 KB + 64
control

Beam

General Purpose
Register Set

32 x 32bit SPFI, Beam

Special Purpose
Register Set

32 x 32bit SPFI, Beam OS dependant

Execution Pipeline 10 x 32bit SPFI?, Beam

ALU / MAC ~1,200 bits Beam

Timers 3x 64bit SPFI?, Beam

MMU 72 x 68bits NA OS dependant

Misc 1024 Beam

Total 42,288 bits 36k w/ no OS

In comparison, Virtex4FX60 bitstream is 21,322,496 bits, or
over 500x larger

PowerPC 405
Functional Diagram

Interferometer Synthetic
Aperture Radar (SAR)

Simulates a synthetic “aperture” or
antenna using the satellite’s flight
path

•   Combine multiple radar images into a
higher resolution result

InSAR used to detect
•   Surface deformation
•   Ice sheet dynamics
•   Ecosystem structure

DESDynl Decadal Mission instrument
•   L band
•   35m resolution
•   140 Mbps data rate

Science benefits
•   Increase in public health and safety due to

decreased exposure to tectonic hazards
•   Response of ice sheets to climate change
•   Effects of changing climate and land use on species

habitats and CO2

Image courtesy of NASA JPL

Spaceborne Imaging Radar-C/X-band Synthetic Aperture
radar image demonstrating ability to detect climate-
related changes on the Patagonian ice fields in the Andes
Mountains of Chile and Argentina. The images show
nearly the same area of the south Patagonian ice field
imaged during two space shuttle flights in 1994
conducted five-and-a-half months apart. Changes in color
represent changes in glacier density.

Hyperspectral Imaging

Images hundreds of frequency bands
inside and outside of human
visual system

HyspIRI Decadal Survey Mission
—   Hyperspectral Visible ShortWave InfraRed

(VSWIR) Imaging Spectrometer
  Range 380 to 2500 nm in 10 nm bands
  60 m sampling
  804 Mbps data generated

—   15 MBPS downlink
—   Onboard processing and autonomous

prioritization of data product transmission
likely needed

Science benefits
—   Changes in vegetation type and deforestation
—   Volcanic eruption and landslide forecasting
—   Improved natural resource exploration HyspIRI Test Image,

courtesy NASA HyspIRI
Science Workshop

SOFTWARE DEVELOPMENT

SAR Application Parallelization

SAR is highly parallel at the
kernel level

Perform the sequential
computation at the outset

Parallelize the loops
•   Synchronize as necessary

Sequential

Parallel

Record Init

FFT

Multiply

IFFT

Synchronize

PE

Accumulate and
 threshold

Caching With Dual Processor

Primary challenge
—   Cache coherence
—   PPCs are not “dual core.”
—   No hardware manages

memory accesses and
maintains synchronization

Write-back cache
—   Best performance
—   Most complex

implementation

Data endpoints corrupt due
to cache misalignment

Solution: Programmers
align ALL shared data to
cache boundaries

PPC1 PPC2

Cache Cache

Main Memory

PPC1 R(x)

Line 0

Line 1

Line 2

Line 3

X

X

PPC 1 Cache

PPC2 R(y)

Performance
S

ec
on

ds

1.4x speedup

1.04x speedup

1.18x speedup

FAULT TOLERANCE
TECHNIQUES

Mission Analysis

Upsets constitute an extremely small fraction of overall
cycles
–  PowerPC 405 – 3.888 x 10^13 clock cycles per day vs ~1 error

per 50 days

Communication Downlink is largest bottleneck
—  Data typically buffered – enables out of order execution

Science Applications
•   Tend to be streaming computations with little feedback or state

needed to be kept
•   Ground processing can clean up single, non-persistent errors

High Performance Computing Community has similar
problem
•   Is checkpointing and rollback viable for embedded real time

systems?

18

Fault Tolerance System
Hierarchy

Register Level
 Mitigation
(TMR, EDAC)

Sub-system Level Mitigation
 (Checkpointing and rollback,

Scheduling, Configuration Scrubbing)

Application Level Mitigation
 (Instruction level TMR, Cache
Flushing, BIST, Control Flow

Duplication)

Increasing
reaction time

Increasing
Fault
Coverage

Developing a fault mitigation system of
techniques

Sub-system Level Mitigation
—   Relies on supporting radiation hardened

devices
—   High fault type coverage
—   Slow response time (up to seconds)
—   Low overhead

Application Level Mitigation
—   Routines that can be inserted into

application code
—   Processor mitigates self

Register Level Mitigation
—   Quick response time (clock cycles)
—   High overhead

Approach: Focus on Sub-system level
first, and tune for reliability
performance

Sub-system Level Mitigation

FPGA 0

FPGA 2

FPGA N

FPGA 0

Shared
Memory
Bus

Rad-Hard Micro-
controller

Application Queue

Power
PC 0

Event Queue

Timer Interrupt

Schedule

r

Control
Packets
Heartbeat
Packets

Power
PC 1

Power
PC 2

Power
PC N

Task Scheduler

Memory Guard

To Flight
Recorder

Access
Table

•  

•  
•  

Implement Single
Instruction, Multiple Data
(SIMD) model

RadHard controller performs
data scheduling and error
handling

•   Control packets from
RadHard controller to
PowerPCs

•   Performs traditional
bitstream scrubbing

PowerPC node
•   Performs health status

monitoring (BIST)
•   Sends health diagnosis

packet ‘heartbeats’ to
RadHard controller

Sub-system Architecture: No
Errors

Virtex4

Packet Scheduling
Heartbeat
Monitoring

Reboot / Scrub
control

Radhard Controller

Virtex4

PowerPC PowerPC PowerPC PowerPC

CLB-based
Accelerator

CLB-based
Accelerator

CLB-based
Accelerator

CLB-based
Accelerator

SAR Frame 2 SAR Frame 1 SAR Frame 4 SAR Frame 3

Performance utilization approaches
100%
-Slightly less due to checking overheads

Sub-system Architecture: Failure
Mode

If a node fails, Radhard Controller
scheduler sends frame data to
next available processor
Faulty node is reset or rebooted

Virtex4

Packet Scheduling
Heartbeat
Monitoring

Reboot / Scrub
control

Radhard Controller

Virtex4

PowerPC PowerPC PowerPC PowerPC

CLB-based
Accelerator

CLB-based
Accelerator

CLB-based
Accelerator

CLB-based
Accelerator

SAR Frame 2 SAR Frame 1
SAR Frame 4 SAR Frame 3

SAR Frame 3

Checkpoint and Rollback

User-level checkpoint/rollback
General purpose
Provides user-defined

callbacks
•   Helpful for graceful cleanup of files,

networks, FPGA fabric

Enables rapid context
switching

t

Checkpoint time

Checkpoint interval

Balance checkpoint interval to upset rate

User source code

Checkpoint
library

Application agnostic
checkpointing library

Self-checkpointing
application

• User links in checkpoint library

•  Library provides checkpoint() and
restart() functions

• User inserts calls to checkpoint() at
desired location(s)

Heartbeats

•  Heartbeats are generated by an FPGA
based timer interrupt

•  Each Heartbeat includes at least the
following:
•  Destination ID / Source ID (1

byte)
•  Message Number (1 byte)
•  Message Type (1 byte)
•  Data Length (N bytes)
•  N data bytes

•  Heartbeats output when:
•  Program Starts
•  Program Ends
•  Autonomous Events

// On a Timer Interrupt
msg[0] = (PPC_ID<<4) |
 RAD_HARD_ID;
msg[1] = heartbeat_number++;
msg[2] = HEARTBEAT_TYPE;
msg[3] = DATA_LENGTH_ZERO;
Send_Message(msg);

Control Flow Assertions

Tag blocks of code with
signatures

As code progresses check
signatures against
expected value

Programmer indicates where
to put assertions

x = 50;
if (condition == 1)

 new_x = x-5;
else

 new_x = x – 3;
z = new_x – x;

Original Code

ES_1 = ES_1 ^ 01;
x = 50;
if (condition == 1)
{

 ES_1 = ES_1 ^ 010;
 new_x = x-5;

}else{
 ES_1 = ES_1 ^ 010;
 New_x = x – 3;

}
ES_1 = ES_1 ^ 0100;
if (ES_1 != 0111) error();
z = new_x – x;

Transformed Code

•  When an error is detected, alert heartbeat
and initiate a rollback

•  Coordinate rollback/restart with 2nd PPC

PRELIMINARY RESULTS

26

Performance Overhead

•  Checkpointing
largely
dependant on
off-chip memory
speed
•  SpaceCube will
check point in
memory, not
Flash

Fault tolerance only costing < 2% overhead

SAR Fault Injection Results
(Unmitigated)

Using SPFI fault injector for baseline
testing

—   Automatically injecting faults into
register set and memory

Observations
—   Only 10% of the injected errors

resulted in failure of any kind.
—   89% of injections had no effect
—   1% failed to inject

Of those injections that resulted in
failures
—   Only 2 resulted in bad data
—   8 crashed the application

Of those failures that crashed the
application
—   Only 1 was a GPR
—   Others were LR, SP, PC

  Mostly control flow
A-OPSS fault mitigation can detect

and recover from many control
flow failures

A-OPSS vs Traditional Mitigation
Preliminary Results

0

1

2

3

4

1 CPU 2 CPU 3 CPU 4 CPU

Sp
ee

du
p

Comparison of Fault Tolerance
Strategies on SAR

No FT

AOPSS FT

Dup, TMR,
QMR

Duplicati
on

TMR QMR

•  A-OPSS approach
leverages additional
hardware for useful
computation

•  Heartbeats and
assertions cause
minimal overhead

•  Checkpoints are taken
according to the
expected upset rate

SUMMARY

Developing a library of fault tolerance routines available
to NASA community
—   Targeted for science data processing

Initial tests promising
—  Observed faults in unmitigated processor in LEO extremely low
—  <2% overhead for fault tolerant routines
—  ~2% of faults result in data errors

Upgrading Fault Injection
—  Developing new techniques to inject faults from FPGA fabric

which emulate faults in caches, local buses etc

Test Plans
—   Beam testing 2nd half 2010
—   ISS testing on MISSE-7

