
Autonomous, On-board Processing for 
Sensor Systems: 

High Performance Fault Tolerant 
Techniques 

Matthew French, JP Walters, Mark Bucciero – USC / 
ISI 

Tom Flatley – NASA GSFC 
June 23rd, 2010 



FPGAs in Space 
Background 

Field Programmable Gate Arrays (FPGAs) provide near 
Application Specific Integrated Circuit (ASIC) performance 
while being reprogrammable 
—   Resource Multiplexing 

  Multi-mission, multi-sensor 
—  Mission Obsolescence 

  Update Algorithms 
—  Design Flaws 

  Correct in Orbit 
Static Random Access Memory (SRAM) based FPGAs are now 

common in space based systems 
—   Research such as that  on the Reconfigurable Hardware in Orbit (RHinO) 

NASA AIST-03 project developed Radiation Hardening By Software 
(RHBSW) techniques to mitigate Single Event Upsets in commercial 
grade devices (COTS) 

—   10-100x Processing Performance over Anti-fuse FPGAs 
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FPGAs Today 

FPGAs have evolved, becoming heterogeneous 
—   PowerPC processors, Ethernet cores, Giga-bit transceivers 

FPGA Embedded PowerPC outperforms radiation hardened 
RISC processors 

Legacy features 
(known mitigation 
techniques) 

New 
features 

Xilinx V5FXT Datasheet 

Can RHBSW techniques be developed for new Hard IP Resources? 
How can these features be leveraged to address autonomy? 

Processor
 Mongoose V
 RAD6000
 RAD750
 Virtex4 
PPC405


Virtex 5 
PPC440


Dhrystone MIPS
 8
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Existing Embedded PPC 
Fault Tolerance Approaches 

Problem: PowerPC state is not readable from the 
bitstream like all traditional FPGA circuitry 

•   Configuration scrubbing techniques have limited value 
•   Fault injection / emulation not feasible by this method 

Quadruple Modular Redundancy 
•   2 Devices = 4 PowerPCs 
•   Vote on result every clock cycle 
•   Fault detection and correction 
•   ~300% Overhead 

Dual Processor Lock Step 
•   Single device solution 
•   Error detection only 
•   Checkpointing and Rollback to return to last known 

safe state 
•   100% Overhead 
•   Downtime while both processors rolling back 
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New fault tolerance techniques and error insertion methods 

must be researched. 

Voter 

Checkpoint 
and Rollback 

Controller 

QMR Approach 

Dual Lock Step Approach 



Autonomous, On-board Processing for 
Sensor Systems 

Key Milestones 

√ Initial documentation                                        5/1/09 
√ Manual FT application demo                               10/15/09 
Automated FT application demo                        3/30/10 
Autonomous agent simulation demo                   10/15/10 
Autonomy hardware demo                                 3/30/11 
End-to-end autonomy demo                               10/15/12 
End-to-end multi-node autonomy demo              3/30/12 
Final documentation & report                            3/30/12 

Co-I’s/Partners 
Tom Flatley/GSFC 

PI: Matthew French, USC/ISI 

TRLcurrent = 3 TRLin = 3 

Approach 
Phase I: Fault Tolerance 

— Develop HPC fault techniques and tools for Virtex4FX 
— Demonstrate on SAR application 

Phase II: Single Node Autonomy 
— Extend autonomous  architecture to SpaceCube 
— Demonstrate node level adaptation on dynamic scenarios 

Phase III: Multi-layer Autonomy 
— Extend architecture to system level (ground, other nodes) 
— Demonstrate  end-to-end adaptation 

Objective 
Fuse high performance reconfigurable processors with 
emerging fault-tolerance & autonomous processing techniques 
for a 10-100x decrease in processing time. 

–   This means more science experiments conducted per day & 
more thorough, timely analysis of captured data.  

–   Addresses the ability to quickly react & adapt processing 
or mission objectives in real-time, by combining 
autonomous agents with reconfigurable computing.  

–   Enables Autonomous On-board Processing for Sensor 
Systems (A-OPSS), via a tool-suite that generates a run-
time system for sensor systems to autonomously detect 
changes in collected data & tune processing in a controlled 
manner to adapt to unforeseen events. 

Decadal Survey Missions: Primary - DESDynl, HyspIRI, GEO-
CAPE; Secondary – SMAP, SWOT  Autonomous System Development 

Pre-processing Noise Cancellation 
Feature Detection 

and Extraction 

Application 
Scheduler 

Today’s 
Systems 

Autonomous System 

Pre-processing 
Noise Cancellation 

Feature Detection 
and Extraction 

Autonomous 
Control 

Dynamic Control 

Pre-processing 
Noise Cancellation 

Feature Detection 
and Extraction 

Static 

Legend 

Dynamic 

Data 

Control 

Scheduler can update 
processing chain based on 
predetermined routine or 
external events 

Scheduler is upgraded to monitor data heuristics to develop 
situational awareness and enact new processing states / 
algorithms based on observed data 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NASA HARDWARE and 
APPLICATIONS 
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SpaceCube 1.0 

SpaceCube Technology 
—  Multi-processing, reconfigurable platform 

  2 Xilinx V4FX60 devices 
—   Low cost, light weight, moderate power 
—   Custom stackable architecture 
—  >10x performance increase over existing 

flight processors 
—  Mechanical:  

  7.5-lbs,   5”x5”x7” 
—   Power:  

  37W (HST RNS Application) 

Exploded 
SpaceCube 

Processor Card 



SpaceCube 1.0 Processor Card Details 

General:  4”x4” card, Back-to-Back FPGAs (x2), 7W typical power 
Memory:  1GB SDRAM, 1GB Flash, 16KB SRAM, 16KB PROM 
Interfaces:  20 bi-dir differential signals, JTAG 
Backplane:  Power, 42 single-ended, 8 LVDM, 2 I2C, POR 
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Xilinx 
V4FX60 Xilinx 

V4FX60 
Aeroflex UT6325 

Aeroflex UT6325 
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SpaceCube on MISSE7 

Purpose 
—   On-orbit “Rad Hard By Software” test platform 
—   Collect radiation performance 
—   Collaborate 

  Demonstrate partners’ technology on-orbit 
Capabilities 

—   Two SpaceCube processor cards 
  Independent experiment units 

—   On-orbit reconfiguration  
  Uplink compressed data files from the ground 

–  new bit files, new PPC code, new microcontroller 
code, new data files 

—   Bandwidth (small but functional)   
  With dedicated access to MISSE7 C&DH box 

–  Uplink 106 bytes  every  3 sec  (~35 bytes/sec)  
–  8hrs to uplink 1MB 
–  Downlink 1024 bytes every 3sec (~341 bytes/sec) 

Flight test opportunities available for 
   A-OPSS technology 

SpaceCube on MISSE-7 
experiment aboard the ISS 



PowerPC Sensitive Cross 
Section Estimate 

Do not have full visibility of PowerPC architecture, however good 
estimate can be made from data sheets 

Feature Size Fault Injection 
Method 

Comments 

Instruction Cache 16 KB +64 
control 

Beam 

Data Cache 16 KB + 64 
control 

Beam 

General Purpose 
Register Set 

32 x 32bit SPFI, Beam 

Special Purpose 
Register Set 

32 x 32bit SPFI, Beam OS dependant 

Execution Pipeline 10 x 32bit SPFI?, Beam 

ALU / MAC ~1,200 bits Beam 

Timers 3x 64bit SPFI?, Beam 

MMU 72 x 68bits NA OS dependant 

Misc 1024 Beam 

Total 42,288 bits 36k w/ no OS 

In comparison, Virtex4FX60 bitstream is 21,322,496 bits, or 
over 500x larger 

PowerPC 405 
Functional Diagram 



Interferometer Synthetic 
Aperture Radar (SAR) 

Simulates a synthetic “aperture” or 
antenna using the satellite’s flight 
path  

•   Combine multiple radar images into a 
higher resolution result 

InSAR used to detect  
•   Surface deformation 
•   Ice sheet dynamics  
•   Ecosystem structure 

DESDynl Decadal Mission instrument 
•   L band 
•   35m resolution 
•   140 Mbps data rate 

Science benefits 
•   Increase in public health and safety due to 

decreased exposure to tectonic hazards 
•   Response of ice sheets to climate change 
•   Effects of changing climate and land use on species 

habitats and CO2 

Image courtesy of NASA JPL 

Spaceborne Imaging Radar-C/X-band Synthetic Aperture 
radar image demonstrating ability to detect climate- 
related changes on the Patagonian ice fields in the Andes 
Mountains of Chile and Argentina. The images show 
nearly the same area of the south Patagonian ice field 
imaged during two space shuttle flights in 1994 
conducted five-and-a-half months apart. Changes in color 
represent changes in glacier density. 



Hyperspectral Imaging 

Images hundreds of frequency bands 
inside and outside of human 
visual system 

HyspIRI Decadal Survey Mission 
—   Hyperspectral Visible ShortWave InfraRed 

(VSWIR) Imaging Spectrometer  
  Range 380 to 2500 nm in 10 nm bands 
  60 m sampling 
  804 Mbps data generated 

—   15 MBPS downlink 
—   Onboard processing and autonomous 

prioritization of data product transmission 
likely needed 

Science benefits 
—   Changes in vegetation type and deforestation 
—   Volcanic eruption and landslide forecasting 
—   Improved natural resource exploration HyspIRI Test Image, 

courtesy NASA HyspIRI 
Science Workshop 



SOFTWARE DEVELOPMENT 



SAR Application Parallelization  

SAR is highly parallel at the 
kernel level 

Perform the sequential 
computation at the outset 

Parallelize the loops 
•   Synchronize as necessary  

Sequential 

Parallel 

Record Init 

FFT 

Multiply 

IFFT 

Synchronize 

PE 

Accumulate and 
 threshold 



Caching With Dual Processor 

Primary challenge 
—   Cache coherence  
—   PPCs are not “dual core.”  
—   No hardware manages 

memory accesses and 
maintains synchronization 

Write-back cache 
—   Best performance 
—   Most complex 

implementation 

Data endpoints corrupt due 
to cache misalignment 

Solution: Programmers 
align ALL shared data to 
cache boundaries 

PPC1 PPC2 

Cache Cache 

Main Memory 

PPC1 R(x) 

Line 0 

Line 1 

Line 2 

Line 3 

X 

X 

PPC 1 Cache 

PPC2 R(y) 



Performance 
S

ec
on

ds
 

1.4x speedup 

1.04x speedup 

1.18x speedup 



FAULT TOLERANCE 
TECHNIQUES 



Mission Analysis 

Upsets constitute an extremely small fraction of overall 
cycles 
–  PowerPC 405 – 3.888 x 10^13 clock cycles per day vs ~1 error 

per 50 days 

Communication Downlink is largest bottleneck 
—  Data typically buffered – enables out of order execution 

Science Applications 
•   Tend to be streaming computations with little feedback or state 

needed to be kept 
•   Ground processing can clean up single, non-persistent errors 

High Performance Computing Community has similar 
problem 
•   Is checkpointing and rollback viable for embedded real time 

systems? 
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Fault Tolerance System 
Hierarchy 

Register Level 
 Mitigation  
(TMR, EDAC) 

Sub-system Level Mitigation 
 (Checkpointing and rollback, 

Scheduling, Configuration Scrubbing) 

Application Level Mitigation 
 (Instruction level TMR, Cache 
Flushing, BIST, Control Flow 

Duplication) 

Increasing 
reaction time 

Increasing 
Fault 
Coverage 

Developing a fault mitigation system of 
techniques 

Sub-system Level Mitigation 
—   Relies on supporting radiation hardened 

devices 
—   High fault type coverage 
—   Slow response time (up to seconds) 
—   Low overhead 

Application Level Mitigation 
—   Routines that can be inserted into 

application code 
—   Processor mitigates self 

Register Level Mitigation 
—   Quick response time (clock cycles) 
—   High overhead 

Approach: Focus on Sub-system level 
first, and tune for reliability 
performance 



Sub-system Level Mitigation


FPGA 0 

FPGA 2 

FPGA N 

FPGA 0 

Shared 
Memory 
Bus 

Rad-Hard Micro-
controller 

Application Queue


Power
PC 0 

Event Queue


Timer Interrupt

Schedule

r


Control 
Packets 
Heartbeat 
Packets 

Power
PC 1 

Power
PC 2 

Power
PC N 

Task Scheduler


Memory Guard


To Flight 
Recorder 

Access 
Table 

•    

•    
•    

Implement Single 
Instruction, Multiple Data 
(SIMD) model 

RadHard controller performs 
data scheduling and error 
handling 

•   Control packets from 
RadHard controller to 
PowerPCs 

•   Performs traditional 
bitstream scrubbing 

PowerPC node 
•   Performs health status 

monitoring (BIST) 
•   Sends health diagnosis 

packet ‘heartbeats’ to 
RadHard controller 



Sub-system Architecture: No 
Errors 

Virtex4 

Packet Scheduling 
Heartbeat 
Monitoring 

Reboot / Scrub 
control 

Radhard Controller 

Virtex4 

PowerPC PowerPC PowerPC PowerPC 

CLB-based 
Accelerator 

CLB-based 
Accelerator 

CLB-based 
Accelerator 

CLB-based 
Accelerator 

SAR Frame 2 SAR Frame 1 SAR Frame 4 SAR Frame 3 

Performance utilization approaches 
100% 
-Slightly less due to checking overheads 



Sub-system Architecture: Failure 
Mode 

If a node fails, Radhard Controller 
scheduler sends frame data to 
next available processor 
Faulty node is reset or rebooted 

Virtex4 

Packet Scheduling 
Heartbeat 
Monitoring 

Reboot / Scrub 
control 

Radhard Controller 

Virtex4 

PowerPC PowerPC PowerPC PowerPC 

CLB-based 
Accelerator 

CLB-based 
Accelerator 

CLB-based 
Accelerator 

CLB-based 
Accelerator 

SAR Frame 2 SAR Frame 1 
SAR Frame 4 SAR Frame 3 

SAR Frame 3 



Checkpoint and Rollback 

User-level checkpoint/rollback 
General purpose 
Provides user-defined 

callbacks 
•   Helpful for graceful cleanup of files, 

networks, FPGA fabric 

Enables rapid context 
switching 

t 

Checkpoint time 

Checkpoint interval 

Balance checkpoint interval to upset rate 

User source code 

Checkpoint 
library 

Application agnostic 
checkpointing library 

Self-checkpointing 
application 

• User links in checkpoint library


•  Library provides checkpoint() and 
restart() functions


• User inserts calls to checkpoint() at 
desired location(s)




Heartbeats


•  Heartbeats are generated by an FPGA 
based timer interrupt 

•  Each Heartbeat includes at least the 
following: 
•  Destination ID / Source ID (1 

byte) 
•  Message Number (1 byte) 
•  Message Type (1 byte) 
•  Data Length (N bytes) 
•  N data bytes 

•  Heartbeats output when: 
•  Program Starts 
•  Program Ends 
•  Autonomous Events 

// On a Timer Interrupt 
msg[0] = (PPC_ID<<4) | 
          RAD_HARD_ID; 
msg[1] = heartbeat_number++; 
msg[2] = HEARTBEAT_TYPE; 
msg[3] = DATA_LENGTH_ZERO; 
Send_Message(msg); 



Control Flow Assertions 

Tag blocks of code with 
signatures 

As code progresses check 
signatures against 
expected value 

Programmer indicates where 
to put assertions 

x = 50; 
if (condition == 1) 

 new_x = x-5; 
else 

 new_x = x – 3; 
z = new_x – x; 

Original Code 

ES_1 = ES_1 ^ 01; 
x = 50; 
if (condition == 1) 
{ 

 ES_1 = ES_1 ^ 010; 
 new_x = x-5; 

}else{ 
 ES_1 = ES_1 ^ 010; 
 New_x = x – 3; 

} 
ES_1 = ES_1 ^ 0100; 
if (ES_1 != 0111) error(); 
z = new_x – x; 

Transformed Code 

•  When an error is detected, alert heartbeat 
and initiate a rollback 

•  Coordinate rollback/restart with 2nd PPC 



PRELIMINARY RESULTS 
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Performance Overhead 

•  Checkpointing 
largely 
dependant on 
off-chip memory 
speed 
•  SpaceCube will 
check point in 
memory, not 
Flash 

Fault tolerance only costing < 2% overhead 



SAR Fault Injection Results 
(Unmitigated) 

Using SPFI fault injector for baseline 
testing 

—   Automatically injecting faults into 
register set and memory 

Observations 
—   Only 10% of the injected errors 

resulted in failure of any kind. 
—   89% of injections had no effect 
—   1% failed to inject 

Of those injections that resulted in 
failures 
—   Only 2 resulted in bad data 
—   8 crashed the application 

Of those failures that crashed the 
application 
—   Only 1 was a GPR 
—   Others were LR, SP, PC 

  Mostly control flow 
A-OPSS fault mitigation can detect 

and recover from many control 
flow failures 



A-OPSS vs Traditional Mitigation 
Preliminary Results 
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Comparison of Fault Tolerance 
Strategies on SAR 

No FT 

AOPSS FT 

Dup, TMR, 
QMR 

Duplicati
on 

TMR QMR 

•  A-OPSS approach 
leverages additional 
hardware for useful 
computation


•  Heartbeats and 
assertions cause 
minimal overhead


•  Checkpoints are taken 
according to the 
expected upset rate




SUMMARY 

Developing a library of fault tolerance routines available 
to NASA community 
—   Targeted for science data processing 

Initial tests promising 
—  Observed faults in unmitigated processor in LEO extremely low 
—  <2% overhead for fault tolerant routines 
—  ~2% of faults result in data errors 

Upgrading Fault Injection 
—  Developing new techniques to inject faults from FPGA fabric 

which emulate faults in caches, local buses etc 

Test Plans 
—   Beam testing 2nd half 2010 
—   ISS testing on MISSE-7 


