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Seasonal Mass Change in Amazon
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Ice Mass Loss


•  GRACE can see changes in 
mass over large regions


•  Effect of most significant 
features (e.g. glaciers) is spread 
due to limited spatial resolution


•  Improved measurement system 
will allow better identification 
of features where mass is 
changing 




Subsurface Aquifer Changes


•  Groundwater storage 
changes in the Sacramento-
San Joaquin River Basins 
from GRACE and 
supplementary data,
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GRACE Measurement Concept


7 

•   Earth gravity features affect lead/trailing spacecraft at different times

–  Lead spacecraft encounters feature first


•   e.g. lead spacecraft speeds up towards mountain

–  Range to trailing spacecraft increases


–  Any unknown non-gravity forces acting on spacecraft also affect range

•   Calibrated out using accelerometer or drag-free sensor system




•   Range is determined by 
round-trip light time 
•   Pulsed light is used in SLR/LLR 

where photon rates are low 

•   Coherent signals allow use of 
phase delay for higher accuracy 

•   Range ambiguity by integer 
number of wavelengths can 
be resolved with modulation 
if required 
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Ranging Measurement Methods
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Dual-one-way versus Transponding


•  GRACE uses independent 
transmission/detection at each 
spacecraft


– Combination of data on ground 
determines range


•  Laser ranging will lock laser to 
frequency reference on one 
spacecraft and lock laser to 
received laser on seconds s/c


– Otherwise laser frequencies would 
be too far apart


– Fast phase meter needed for 
locking function
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GRACE-II Simulation


 



Microwave and Laser Ranging Sensitivity
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Optical Cavity Frequency Reference


•  Stabilize laser frequency by 
locking wavelength to thermally 
stable optical cavity


–  ULE glass has ultra-low thermal-
expansion coefficient


– Isolate from external temperature 
fluctuations 
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Cavity Mount Design


•  Cavity is mounted using 
flexures bonded to cavity 
central ring


– Flexure material (Ti) and stiffness 
chosen to provide support and 
maintain alignment for launch 
and minimize thermo-elastic 
effects on cavity


•  Optics for injecting laser light 
into cavity and output 
interference via fiber also 
mounted to cavity using 
flexures




14 

Optical Fiber Injection


•  Laser light injected into, and 
output signal sent, via fiber


– Optics for light injection form 
small, folded telescope


•  Optics, optical bench, and 
platform are made of low 
thermal expansion (zerodur) 
glass and mounted near cavity 
using flexures
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Thermal Isolation Enclosure


•  Two concentric shells surround the 
cavity and optics to isolate them 
from external thermal


•  Size and mass of laser frequency 
stabilization subsystem has been 
iterated with GRACE spacecraft 
team to ensure compatibility


•  Inner shell forms a vacuum enclosure 
to avoid gas pressure fluctuations and 
contamination


– Vacuum gauge will allow monitoring

– Vacuum valve included on breadboard 

for development, will be replaced with 
pinch-off for prototype
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Laser Locking to Optical Cavity


•   Laser locked to cavity using Pound-Drever-Hall technique

– Light resonance occurs when cavity length is integer number of wavelengths


•   Laser frequency stability is directly related to stability of length of cavity

– Cavity is made of material with low thermal expansion coefficient

– Light exiting cavity compared with light entering cavity

– Requires electro-optical modulator to add phase-modulation to laser beam


•   Difference in modulation signal gives laser correction to match cavity
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Cavity Response Function


•  Laser light injected into 
cavity exits and interferes 
with input light


– Pound-Drever-Hall locking


•  As laser frequency varies at 
input to cavity, interference 
with exiting light produces 
sharply varying response


•  When error signal from 
locking point fed back to 
laser, laser frequency is 
stabilized


Interference response as laser frequency changed  

Laser frequency swept than locked 
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Tunable Laser
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•  Non-planar ring oscillator 
(NPRO) Nd:YAG laser provides 
tunability for locking to cavity


– Laser wavelength adjusted by 
changing dimensions of YAG 
crystal using PZT glued to crystal 
and thermal adjustment


•  Space-qualified NPRO laser 
available from Tesat Spacecom


NPRO laser head 

Laser pump diode assembly 
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Electro-Optical Modulator


•  Several companies make EOM 
suitable for use in space


•  Selected unit from Photline has 
inexpensive laboratory model 
traceable to flight model


– Tested to show meets locking 
requirements


Selected electro‐op0cal modulator 
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Breadboard Locking Electronics


  Commercial FPGA 
evaluation board used for 
development and testing of 
laser locking algorithms


  ADC for sampling interference 
signal from photodiode


  DACs used to adjust laser 
crystal frequency via PZT and 
temperature




Subsystem Performance Results
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Environmental Test Results


•  Breadboard cavity subjected to vibration and thermal tests per the 
GRACE mission requirements


•  Vibration tests were successful

•  Thermal tests showed a slight misalignment occurred at highest 

temperatures (+60 C, +20 C above maximum flight temp.)

– Traced to adhesive glass transition at 50C

– Prior uses of same adhesive had not been as sensitive to alignment

– We are investigating options for prototype unit
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GRACE Spacecraft
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SuperSTAR Accelerometer
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ONERA 



Racetrack Configuration
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Laser Optical Path on GRACE-FO




Lateral Transfer Hollow Retroreflector™
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IRT Optical Bench




Candidate PZT Actuators
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Future Plans


•  Currently testing performance of modified breadboard subsystem to 
see if limiting error sources have been identified and corrected


•  Prototypes of cavity assembly and electronics board are to be built 
and tested in FY ‘11 to demonstrate TRL 6.


•  GRACE-FO scheduled to start in FY ’11 with PDR in FY’12

– Cavity and locking electronics development fits GRACE-FO schedule well

– Will be challenging to bring total ranging system to flight readiness for launch 

in 2016.
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