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Abstract-Operational weather prediction centers use only a 
fraction of observations of the atmosphere and the earth’s 
surface that are made by satellite, in situ, and ground-based 
instruments. We are investigating the use of wavelet analysis to 
develop an adaptable selection method based on the local 
information content in a satellite data scene to determine the 
density of observations to use.  This investigation supports and 
enhances Earth science capability by 1) improving the selection 
and impact of the vast, information-rich and valuable satellite 
observations of the Earth system, 2) combining mature 
technologies (atmospheric data assimilation and wavelet analysis) 
for a novel and practical use, and 3) raising the technology 
readiness level (TRL) of this technique to a working prototype in 
a realistic setting. 

Our results to date show that wavelet-based selection is 
roughly equivalent to regular decimation to every 8th or 10th 

datum. Extracting information at the smallest spatial scales (25 
and 50 km) required the development of a new noise thresholding 
approach because the signal-to-noise ratio is small.  This new 
method is described and demonstrated. 

I. INTRODUCTION 

Current practice at operational weather centers reduces 
today’s enormous volume of satellite data to practical levels 
by regular decimation, i.e., keeping every 2nd or 4th or 6th point 
along and across the satellite’s data swath.   Our work 
investigates an adaptable approach to select data.  We are 
using the continuous wavelet transform (CWT) [1] in two 
dimensions (x,y) to identify features of interest for more 
informed data thinning.  Retrieved wind speeds from NASA’s 
SeaWinds scatterometer on QuikSCAT [2] provide the input 
data for the thinning technique in our study.  The amplitudes 
of the wavelet coefficients from two passes of the CWT (top-
to-bottom and left-to-right) are summed to identify edges and 
gradients in the satellite-observed wind speed field.  The CWT 
provides information on six spatial scales (25, 50, 100, 200, 
400, 800 km), so features of interest can be identified on each 
of these scales.  Once features are identified at each spatial 
scale, the satellite data are decimated to a density appropriate 
to the associated spatial scale.  The final data selection is the 
union of all points selected at every scale.  We test our 
thinning technique by data assimilation in atmospheric models 
with a 2d-variational method [3].  The baseline case 
assimilates all available data (ALL).  This provides a “best” 
analysis since it uses all available data.  But it is also 
computationally expensive.  Experiments assimilating thinned 
subsets of the data by regular decimation and wavelet-based 
selection are evaluated for information content.  Our goal is to 
retain as much information as possible in the data assimilation 

analysis but by only using 3-5% of the data through wavelet-
based selection. 

II. WAVELET ANALYSIS APPLIED TO SATELITE WIND SPEEDS 

A. Wavelet-based selection 
 

Our data-thinning algorithm uses the CWT to obtain a 
measure of the local information content of the data.  This 
approach was first developed in the context of edge detection 
[4].  In particular, the CWT has several important advantages 
over the more commonly used discrete wavelet transform 
(DWT).  Both transforms provide a complete and invertible 
representation of the data.  However, while the DWT uses a 
set of orthogonal wavelet bases to obtain the most compact 
representation of the image, useful for data compression, the 
CWT uses a set of nonorthogonal wavelet frames to provide a 
highly redundant representation.  The consequence of this 
redundancy is that the CWT gives a wavelet coefficient at 
each analysis scale for each pixel in the image, allowing us to 
characterize the local information content.  In addition, this 
redundancy improved the stability of the reconstruction 
(inverse transform) in the presence of noise.  Using a wavelet 
based on the conventional Canny edge detector allows us to 
simultaneously detect, localize, and characterize the edges in 
the observation data.  Following the approach described by 
Mallat [1], we first apply the CWT using a wavelet oriented 
across the satellite track and then repeat using a wavelet 
oriented along the satellite track.  We then take the 
coefficients from these two-orthogonal directions to produce a 
wavelet amplitude and phase for each pixel at each scale. 
 

After analyzing the data with the CWT, we have developed 
the following technique to identify the features of interest and 
select the data points along these features: 
 

1. Identify the wavelet transform modulus maxima (WTMM) for 
each scale using the wavelet magnitude and phase. 

2. Create wavelet maxima chains from the WTMM for each scale 
by comparing nearest neighbors. 

3. Perform wavelet noise reduction to eliminate extraneous 
WTMM chains. 

4. Connect remaining wavelet maxima chains through scales to 
create wavelet ridge (signal skeleton). 

5. Select data points along wavelet ridge lines. 
 
Because noise introduces multiple small-scale edges within 

the data, we have developed a technique for distinguishing 
between WTMM produced by signal and WTMM produced 
by noise at these scales.  Simple thresholding does not work 
since both types of WTMM are of equal magnitude. 



 
Fig. 1. SeaWinds wind speeds (left) and selected wind speeds (right) for 

Typhoon Meranti at 1800 UTC 7 August 2005.  Wind speeds from 0 to 30 m/s 
are shown as colors from purple to red. 

 
 

 
Fig. 2. Two-dimensional wavelet analysis of Typhoon Meranti ocean surface 

wind speeds (from Fig. 1).  See text for detailed description. 

However, the WTMM associated with actual geophysical 
structure will track down from larger to smaller scales.  
Therefore, we first used an approach similar to the scale 
multiplication method of Zhang and Bao [5] to partition the 
signal from the noise.  We have developed a more robust 
technique for partitioning signal and noise using a Baysian 
method (described below in Section II.B). 
 

In Figs. 1 and 2, we apply our data-thinning algorithm to an 
example of satellite-observed ocean-surface wind speeds 
obtained during Typhoon Meranti, 1800 UTC 7 August, 2004.  
Figure 1 shows the satellite image in the left panel and the 
results of our analysis in the right panel.  The number of data 
values selected by the algorithm for this example corresponds 
to about 2.5% of the total number of data points.  Figure 2 
shows the intermediate results generated by the wavelet 
analysis for the image in Fig. 1.  The top two rows in Fig. 2 
plot the magnitude and phase of the two-pass CWT operation 
for the scales of 25, 50, 100, 200, 400, and 800 km.  The 
bottom two rows show the results of the data-thinning 
algorithm before data location selection both without and with 
the additional noise-partitioning step for all of the scales.  By 
comparing these two rows we see a significant reduction in 
number of WTMM ridges in the smallest three scales (25, 50, 
and 100 km).  
 

After noise thresholding, we compare the remaining 
WTMM chains for each scale with those from the next largest 
scale.  We retain only those WTMMs that track down from 
the larger scale.  In order to track down, the WTMM must be 
located to within a scale size neighborhood of the position of 
the larger scale WTMM.  The complete set of WTMM 
cascading from large scales to small scales are referred to as 
the wavelet ridges and form the basic skeleton of the signal.  
We then select points by either using a scale-based regular 
selection method or by using the maxima in the WTMM 
following the technique of Arneodo[6].  The regular selection 
technique retains points spaced a scale-size distance apart 
along the WTMM chains for each scale size. 

B. Baysian partitioning of signal and noise 
 

We found that the multiplication method of partitioning 
signal and noise requires scale specific thresholds and is not 
adaptive.  This is problematic for the smaller spatial scales 
where signal and noise are often have similar magnitudes.  To 
accomplish noise removal on all scales without specifying 
thresholds, we developed a Baysian approach.  First, we 
calculate square modulus from wavelet components for each 
scale, 
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where dj

H and dj
V are the wavelet coefficients for the jth scale 

at each point in a domain of dimensions [m,n] from horizontal 
(H) and vertical (V) analyses of the image.  Next, we model 



the squared modulus as a two-component Gamma distribution 
using the Nelder-Mead simplex method, 
 
 
 
 
where λ0, λ1 and w0, w1 are computed parameters of the fitted 
distributions.  Finally, we calculate posterior probability that 
each wavelet coefficient is significant using Bayes Method.  
Coefficients that fall within the “signal” distribution are 
retained. 
 

Figure 3 shows an example of this noise partitioning for two 
spatial scales.  Wavelet analysis of the image of Typhoon 
Meranti wind speeds (left) generates the squared modulus 
images at scales of 23 and 24 (middle panels).  The distribution 
of the squared modulus values are modelled by two-component 
Gamma distributions (right panels).  At each scale and for any 
point in the image, that point either falls within the “signal” 
distribution (left sides of the histograms) or the “noise” 
distribution (tail of the histograms).  Bayes method determines 
the posterior probability that each point falls within one or the 
other distribution. 
 

 
Fig. 3. Noise thresholding on two spatial scales using fitted two-compoenent 

distributions. 
 
Figure 4 shows an example of noise thresholding on all scales 
using this technique for the Meranti image in Fig. 3. 
 

 
Fig. 4. Wavelet noise reduction for the image in Fig. 3. 

III. EVALUATION OF THINNED AND DECIMATED SWS DATA 

We use atmospheric data assimilation as a tool to evaluate 
the efficacy of wavelet-selected points versus other thinning 
techniques. In this study we compare wavelet-thinning to 
regular decimation (i.e., every 2nd, 4th, 8th, etc. observation).  
We use the following test: if an atmospheric analysis using 
wavelet-selected observations is improved compared to an 
atmospheric analysis using regularly decimated data (given a 
comparable fraction of observations are retained by each 
technique), the wavelet-selected points are superior.  In the 
future, we will also conduct forecast experiments to evaluate 
the effects of data thinning strategies on forecast skill.  In this 
paper, we report only on the results of data assimilation 
experiments. 

( ) 0 1
2

/ /
0 1

0 1

1 1
j

x x
M

p x w e w eλ λ

λ λ
− −= +

We conducted a search for appropriate cases for data 
assimilation and forecast experiments.  We want to isolate the 
impacts of data thinning from other contaminating influences 
as much as possible, so we have adopted a case selection 
strategy that only considers satellite data within ~10 minutes 
of synoptic times (i.e., 00, 06, 12, and 18 UTC).  This 
minimizes the time difference between satellite observations 
and available global analyses of the surface wind field so that 
meteorological features of interest are aligned as closely as 
possible.  We selected three cases that represent a wide range 
of meteorological conditions and have sufficient observations 
at subsequent times for validating the mesoscale forecasts.  
One of the cases has already been presented in Fig. 1 
(Typhoon Meranti, August 2004).  The other two are cases 
are an anticyclone in the South Indian Ocean (October 2004) 
and a very light wind case in the tropical Pacific (March 
2005). In this paper, we will only report on results for 
Typhoon Meranti. 

Meranti 2004/08/07 0600 

Scale 23

Scale 24

0       30 m/s 
 
The design of data assimilation experiments includes 

twelve treatments.  The names of the treatments indicate 
which data are included in the assimilation: 
 

1) ALL 
2) THIN2 every 2nd datum 
3) THIN4 every 4th datum 
4) THIN6 etc. 

Meranti 2004/08/07 0600

Before wavelet 
noise reduction 

After wavelet 
noise reduction 

Dyadic Scale 0 2 3 4 51 

5) THIN8 … 
6) THIN10 … 
7) WAVELET scale-based, regular selection along WTMM chains 
8) WAVELET4 = WAVELET + THIN4 points 
9) WAVELET6 = WAVELET + THIN6 points 
10) WAVELET8 etc. 
11) WAVELET10 … 
12) WTMMM points selected using WTMM maxima 
 
We face one difficult problem in conducting data 

assimilation experiments: the true atmospheric state is not 
known.  The atmospheric state from global models and 
measured by satellites both contain errors that are likely to be 
correlated in space and time.  These errors cannot be known 
completely, since we do not know the true atmospheric state.  
To eliminate the uncertainties associated with real  



 
Fig. 5. Ocean surface wind speed around Typhoon Meranti as seen by 

QuikSCAT. 

 

 
Fig. 6. Simulated ocean surface wind speed from a weather forecast model 

nature run (6-hour forecast, in this case), sampled at QuikSCAT data 
locations, plus 2 m/s of white noise to account for observation noise. 

 

 
Fig. 7. The location of simulated observations selected by scale-based, 

regular point selection along WTMM chains. 

 
 
 

 
Fig. 8. As in Fig. 7 but points are selected using the WTMM maxima (see 

description at the end of Section II.A). 

 
 
 
 
 
 



observations and global model estimates of the atmospheric 
state, and to assess the impact of each treatment as precisely 
as possible, we generate a “true” atmospheric state (or “nature 
run”) using a weather forecast model, and simulate “true” 
observations by sampling from our true atmosphere.  To make 
the simulated observations more realistic, we add random 
noise, since real observations have noise from a variety of 
sources.  Figure 5 shows the observed QuikSCAT wind 
speeds and Fig. 6 shows the simulated observations (with 
added noise) generated from a 6-hour nature run forecast.  We 
use the Weather Research and Forecasting (WRF) model to 
generate the “true” atmosphere.  The model domain is 201 x 
201 x 30 grid points with a horizontal spacing of 27 km and a 
model top of 50 hPa.  Figures 7 and 8 show the locations of 
observations selected by wavelet-based methods WAVELET 
and WTMMM, respectively.  Notice that both wavelet point 
selection methods choose about 3.5% of all observations 
(N=15187). 
 

For our data assimilation experiments, we use the WRF 3-
dimensional variational (3dVAR) assimilation system, 
described by Barker et al. [7].  We are using background error 
covariances developed by Wu et al. [8].  The characteristic 
horizontal and vertical spatial scales of the assimilation 
system have been demonstrated using single observation tests 
(not shown) of surface winds and 500 hPa temperatures.  The 
system’s response to these single observations is appropriate 
for our 27 km-resolution model domain. 

Figure 9 shows the verification of the twelve treatments for 
the 0600 UTC 7 August 2004 QuikSCAT overpass of 
Typhoon Meranti.   An atmospheric analysis is generated for 
each treatment using the appropriate subset of observations, 
plus a WRF forecast field 6 hours away from the analysis 
time.  We use an off-time background field so the simulated 
observations and backgournd field have a spatial mismatch 
that 3dVAR attempts to correct.  as the backgr Note that the 
number of observations assimilated for each treatment is 
shown in the legend of Fig. 9.  Then each analysis is 
compared to the full set of simulated observations (N=15187) 
to evaluate how closely the analysis fits the observations. 

Using all of the data (ALL) produces the best analysis, as 
expected.  Also, the accuracy of the THINx analyses generally 
degrades as more data are thinned, as expected.  The analyses 
from the two treatments that rely solely on wavelet-selected 
data, however, do not have nearly the accuracy that one might 
expect based on the number of observations used.  Given that 
the two wavelet selection methods, WAVELET and 
WTMMM, retain ~450-550 of the 15,000+ observations, one 
would expect that the atmospheric analyses using the wavelet-
selected data should be at least as accurate as the THIN6 
analysis (~450 observations).  Yet the wavelet-only analyses 
are comparable to THIN8 or THIN10 analysis accuracies. 

 
Fig. 9. Verification of data assimilation experiments.  u- and v-components 

of the wind are evaluated separately. 

IV.SUMMARY 
 
We have developed and tested wavelet-based data thinning 
methodologies.  While the wavelet techniques can clearly 
identify features of meteorological interest, we are not yet 
realizing improved efficiency or analysis accuracy by using 
the wavelet-selected data.  The current basis functions used 
in our wavelet techniques are designed to identify gradients.  
Perhaps another basis function that identifies local 
maxima/minima could be used to augment or replace the 
current basis function. 
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