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Problem Statement

Overview

• Variations of soil moisture are related to
several physical processes:
temperature, precipitation, vegetation,
soil texture, topography, etc., each at a
different scale

• Remote Sensing satellites give coarse-
resolution estimates of a field mean. For
soil moisture, e.g., the resolution is
O(km) for radars and O(10km) for
radiometers.

• Validation of remote-sensing-derived estimates is nontrivial

– Brute-force production of a ground-reference data set requires a dense sampling
network

– Estimating the field mean that is representative of the true mean requires sampling at
varying scales
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Objectives

Overview

• We are developing a “smart” in-situ sensor web to
accomplish this sampling task using a spatially and
temporally sparse network

• The approach is to develop a sensor web control system

– Control system is guided by optimization criteria derived from
physics-based sensor models and physics-based dynamic
system evolution models

– The dynamic system model is implemented within a data
assimilation framework, which quantifies the relationships
between the measured/estimated  variable and the responsible
physical processes

• The outcome can directly benefit the Soil Moisture Active-
Passive (SMAP) mission validation activities
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Overall Architecture

Overview

• The semi-closed system generates guidance to the sensor web, via
actuators, for modifying its sampling characteristics

• Guidance is derived from coupled data assimilation and control system,
antecedent sensor data, and ancillary data

• User command can also be incorporated
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(1)  Numerical Implementation

System Test Bed

Overview

• Use actual and/or simulated field data, including remotely sensed and in-situ
measurements

• Generate static estimates of soil moisture fields using sensor models

• Simulate soil moisture dynamic evolution model
• Numerically  simulate the control system, initially with only one sensor node

and later with more, using optimization criteria. Increase complexity up to
available computational resources.

(2)  Laboratory Demonstration

• Initialize the feedback loop with simulated or field data, then generate a set of
control signals based on joint optimization

• Transmit control signal to sensor nodes; start with one, increase to half a dozen
nodes for final demonstration

• Decode at actuator, and modify sensor settings

• Allow sensors to collect data; feed to assimilation system, feed to control system

• Repeat
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Envisioned Field Demonstration Scenario

Field measurement at O(100m) and
multiple depths with a single radar

Overview

Moghaddam

Field measurement at O(1m) and
multiple depths with multiple sensors
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Project Components

• Phase A

• Phase B

Experiments
& Actuation

• Soil moisture sensor observation models (probes, radars/radiometers)

•

• Dynamic evolution model of variable soil moisture fields (SWAP)

•

Physical
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Newby Farm, Alabama

Site Number: 2059
Limestone County
Latitude: 34° 51' N
Longitude: 86° 53' W

Dissipative. But Forced With
Exogenous Discontinuities.

 [
%

]

17 –24 October 2004

Barrier to Information

Linked Information

Soil Moisture Profile Evolution in Time and Depth

In Time:

Physical 
Model (ft)

Entekhabi
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Amplitude Damped in –z Direction.
Phase Shift With Depth.

Mean Over
Time Profile

Std. Dev.
Profile

Soil Moisture Profile Evolution in Time and Depth

In Space:

Physical 
Model (ft)

Entekhabi
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From Western and Grayson, 1998: Water Resources
Research, 34(10): pp 2765-2768.

Soil Moisture Patterns as Function of Transverse Space

Soil Moisture Pattern After Wetting
Rainfall Event Follows Topography
and Drainage Pattern

Soil Moisture Pattern After Dry-Down
More Heterogeneous Due to
Variations in Soil Texture and
Vegetation Characteristics

Basin Topography Contour
Lines and Sensor Locations Transverse plane spatial

patterns of soil moisture
state vector may also be
included in the dynamic
evolution model

Physical 
Model (ft)

Entekhabi
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Integrative Model: Soil Moisture and Heat Advection-DiffusionIntegrative Model: Soil Moisture and Heat Advection-Diffusion

Models time and depth variations of soil moisture
Incorporates Surface Energy Balance: Micrometeorological Data Such as
Precipitation, Winds, Air Temperature and Humidity
Incorporates Soil Physics: Flow Dynamics, Amplitude and Phase
Characteristics

SWAP Model Developed
in Netherlands

Among Community
Standards
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• All parameters fixed at specific values for a hypothetical location
• Simulations performed at 1-hour intervals for a period of 20 years
• Actual rainfall values incorporated
• Other measured meteorological conditions also applied
• Soil moisture range calculated is 6% to 43%
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Physical 
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SWAP

Input Categories
at time t:

Meteorology
Crop
Heat Flow
Soil water
Lateral drainage
Bottom boundary
Solute transport

Outputs at
time t+1:

Soil moisture
Water flux
Solute flux
……

Farhadi/ Entekhabi/Moghaddam
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• Soil moisture changes in response to rainfall
• Small amounts of rainfall do not present a significant trigger to soil moisture change
• Variations follow different patterns at different depths, much faster at surface
• This example generated for Tampa, FL

Physical 
Model (ft)

Goykhman/Farhadi

Sample Soil Moisture Simulation Results from SWAP
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Static Sensor Models

• Validation sensors make observations that are translated into
estimates of unknowns variables

• For observation time t, measurements are related to unknowns
via a model h

t
. Sensor models are static but can include

probabilistic nature of unknowns at time t.

• Models and unknowns could be scalar (1-D) or vector (N-D)

• Different sensors allow estimates of the unknowns at different
spatial scales

• Sensors could be in-situ (moisture probes) or remote (tower-
based, airborne, or spaceborne SARs and radiometers)

• Estimation of unknowns could be a complex task, depending on
the degree of model nonlinearity, measurement noise, and
sensor calibration

Measurement 
Model (ht)

Moghaddam
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• Capacitance probes from Decagon,
model ECH2O EC-5

• Developed sensor model and
calibration curve

– Small calibration and retrieval error
(“noise-free” is a good assumption)

– Retrieval model is simple and amounts
to solving a polynomial function

• Verified in lab that these sensors are
highly stable

• In field, sensors will have self-
calibration schedules at regular
intervals

– Conditions such as large temperature
changes will alter schedule

Static Sensor Model Example: in-situ probe

Measurement 
Model (ht)

Goykhman/Moghaddam
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Static Sensor Model Example: remote sensors

• Models are typically much more complicated than in-situ counterparts; typically numerical

• Soil moisture inversion algorithms under development:

– Unknowns are estimated via nonlinear optimization algorithms and approximate polynomial models

– Statistical properties of unknowns are integrated via covariance operators

– Absolute estimation accuracy ~2-4%

Measurement 
Model (ht)

Moghaddam/Goykhman

Radar backscatter amplitude

Radar backscatter 
phase
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Physical Model
(Generated from

SWAP)

Control 
System

Liu/Mahajan/Nayyar/Shuman/Teneketzis

Overview of Control Formulation

Optimal
Measurement
and Estimation

Policy

Measurement
Models of Probe

and Radar

Control
Formulation
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• Take as input a joint time series of soil moisture, rainfall, solar radiation, etc.

• Quantize soil moisture and any other observed parameters

• Assuming a Markovian model, generate a transition probability matrix

Physical
Model

Control 
System

• Determine whether or not to measure soil moisture at each sensor

• Make an estimate of soil moisture

Control
Actions

• Energy consumption cost for using sensor(s)

• Distortion cost for incorrect estimates

• Minimize infinite horizon discounted expected cost

Costs and
Optimization

Criterion

Overview of Control Formulation (cont.)

• For probe, assume perfect observations

• From radar model, generate matrix of observation probabilities

Measurement
Model

Liu/Mahajan/Nayyar/Shuman/Teneketzis
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Control 
System

Solution Method

• Formulate optimal control problem as Partially Observable Markov Decision
Process (POMDP)

• Numerically solve POMDP using POMDP solver

– Use Cassandra’s POMDP solver (www.pomdp.org) or other similar technique

– Hardware limitations may prevent the POMDP solver from converging

Liu/Mahajan/Nayyar/Shuman/Teneketzis
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Control 
System

Numerical Studies

Single noiseless sensor

• 9 soil moisture quantization levels ( 0-15,15-25,25-28,28-31,31-33,33-35,35-38,38-41,over 41%)

• Rain is modeled, not observed

• Cost of taking a soil moisture measurement is 0.5

• Distortion is L1-norm (number of quantiles off)

• Discount factor is 0.5

Case 1

Single noiseless sensor with rainfall observations

•Same as Case 1 except rainfall is observed at every time step

•Rainfall is quantized into 2 levels – low or high

Case 2

Two sensors at the same location – one noisy and one noiseless

•Cost of noiseless sensor remains 0.5; cost of noisy sensor is 0.48

•Noisy sensor measures correct quantile with 96% accuracy

Case 3

Two noiseless sensors at different depths

•Soil moisture levels at the two depths are correlated

•At each decision point, may use none, either, or both of the sensors

Case 4

Liu/Mahajan/Nayyar/Shuman/Teneketzis
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Liu/Mahajan/Nayyar/Shuman/Teneketzis
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Control 
System

Observations / Sensitivity Analysis for Case 1 8
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• General characteristics of solution

– After each measurement, do not take a measurement for
some time

– Duration of the “no measurement” phase depends on the
measurement value and value of rainfall (if observed)

– During the “no measurement” phase, generate estimates
based on current belief

– Algorithm convergence robust to change in problem parameters

• Sensitivity to measurement cost

– Increase in measurement cost increases the duration of the “no measurement” phase

• Sensitivity to distortion function

– For an L2-norm distortion function, duration of “no measurement” phase decreases

– For probability-of-error distortion function, duration of “no measurement” phase increases

• Sensitivity to discount factor

– Increase in discount factor decreases the duration of the “no measurement” phase

Liu/Mahajan/Nayyar/Shuman/Teneketzis
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Control 
System

Numerical Studies (cont.)

Single noiseless sensor

• 9 soil moisture quantization levels ( 0-15,15-25,25-28,28-31,31-33,33-35,35-38,38-41,over 41%)

• Rain is modeled, not observed

• Cost of taking a soil moisture measurement is 0.5

• Distortion is L1-norm (number of quantiles off)

• Discount factor is 0.5

Case 1

Single noiseless sensor with rainfall observations

• Same as Case 1 except rainfall is observed at every time step

• Rainfall is quantized into 2 levels – low or high

Case 2

Two sensors at the same location – one noisy and one noiseless

•Cost of noiseless sensor remains 0.5; cost of noisy sensor is 0.48

•Noisy sensor measures correct quantile with 96% accuracy

Case 3

Two noiseless sensors at different depths

•Soil moisture levels at the two depths are correlated

•At each decision point, may use none, either, or both of the sensors

Case 4

Liu/Mahajan/Nayyar/Shuman/Teneketzis
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Control 
System

Liu/Mahajan/Nayyar/Shuman/Teneketzis
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Single noiseless sensor with rainfall observations

•Same as Case 1 except rainfall is observed at every time step

•Rainfall is quantized into 2 levels – low or high

Case 2

Single noiseless sensor

•9 soil moisture quantization levels ( 0-15,15-25,25-28,28-31,31-33,33-35,35-38,38-41,over 41%)

•No other physical parameter (rain, solar radiation, etc.) is observed

•Cost of taking a soil moisture measurement is 0.5

•Distortion is L1-norm (number of quantiles off)

•Discount factor is 0.5

Case 1

Control 
System

Numerical Studies (cont.)

Two sensors at the same location – one noisy and one noiseless

• Cost of noiseless sensor remains 0.5; cost of noisy sensor is 0.48

• Noisy sensor measures correct quantile with 96% accuracy

Case 3

Two noiseless sensors at different depths

• Soil moisture levels at the two depths are correlated

• At each decision point, may use none, either, or both of the sensors

Case 4

Liu/Mahajan/Nayyar/Shuman/Teneketzis
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Control 
System

Observations for Cases 3 and 4

Case 3

• Policies are of a similar nature to Case 1 with measurements followed by
“no measurement” phases

• Choice of using one sensor or the other is sensitive to relative
measurement costs and accuracy of the noisy sensor

– If noisy sensor is too expensive, it may be optimal to not use it

– Similarly, if noiseless sensor is too expensive, it may be optimal to only use
noisy sensor

• The number of vertices in the policy graph is around 100

• Algorithm converges slower than Case 1, and does not converge for many
choices of measurement costs and noise model

Case 4

• Soil moisture at higher layer is quantized in 3 values and moisture at lower
layer is quantized in 2 values

• Rarely use both sensors at the same time

• With this quantization, the number of vertices in the policy graph is around 4000

• Algorithm converges slower than Case 3, and does not always converge or for
finer quantization levels

Liu/Mahajan/Nayyar/Shuman/Teneketzis
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Control 
System

– Improve numerical robustness of multiple sensor studies by integrating POMDP solver with
CPLEX (a commercial library for solving linear programs)

– Investigate various approximation algorithms for POMDPs

– Identify structural properties of optimal measurement policies for multiple sensors

– Use the measurement model of the radar to determine the observation matrix for noisy
sensors

• Future work

– Examine two or more same-type sensors on surface, but at different locations

– Consider scaling properties of optimal measurement policies

– Consider the case of a total energy constraint

– Investigate supercomputing or parallel computing options to speed up POMDP solver

Liu/Mahajan/Nayyar/Shuman/Teneketzis

Plans and Work in Progress
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Overview of experimental setup

Soil Surface

2
.0

 m

Data

Control

• Will use in-situ and/or remote
observations

• Each sensor sends data to
coordinating center

• Center assimilates data,
generates control

• Center sends control commands
to actuators at sensor locations

Experiments 
& Actuation

Liu
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Phase A

• Proof of concept: Implementation of the feedback control loop
– Successful communication between base station and ground station

– Successful sensor actuation -- activation

– Implementation of the data assimilation algorithms and control algorithms

– Implementation of data processing on the ground wireless unit

• Lab experiment and measurement
– How often does the sensor need to be activated

– Estimate on power consumption at the ground wireless unit

– Algorithmic complexity and memory requirement at the base station

Experiments 
& Actuation

Liu
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Phase A Experiment

Data/Control

• Device choice for Phase A
– Desktop as ground wireless unit with actuator attached
– Actuation control unit is HYTEK iUSBDAQ-U120816
– Laptop/desktop as base station and coordinator
– In-situ soil moisture probes: Decagon ECH2O EC-5

iUSBDAQ - U120816

Experiments 
& Actuation

Goykhman/Liu

Base station:
- receive sensor data
- run sensor model
- run data assimilation
- derive control signal
- transmit

In-situ or remote
sensors

Ground
wireless unit

Actuator
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Phase A Experiment Sample Results

• 48 hour run to observe dry-down in lab after initial “rainfall”
• 49 regular hourly samples (conventional)
• 16 samples prescribed by control system
• New sampling strategy results in 67% savings in number of measurements

Experiments 
& Actuation

Goykhman/Liu
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Phase B

Experiments 
& Actuation

Phase 1 Phase 2 Phase 3
Phase A Phase B

• Multiple sensors, including remote sensing, multiple sites

• Application specific hardware to increase the communication range

(replace the current choice of a laptop for the ground unit)

• Better and more energy efficient devices
– Possibility of solar power use
– Minimum manual maintenance
– Reduce cost and size

• Accuracy of algorithm against ground truth or benchmark

• Trade-off between sensor self-calibration schedule and cost

Liu/Moghaddam/Goykhman
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Phase B Experiment

• Replace ground station computer
with PIC microcontroller
– Wide selection depending on the

application

– Uses a small fraction of energy
used by the laptop

– Costs only a few $

– Can be interfaced with
Transmitter/Receiver modules

• ZigBee RF tx/rcv Module

– ISM 2.4 GHz operating
frequency

– High output power

– Can add a directional
antenna to boost the
range

– Replaces computer
wireless card

Experiments 
& Actuation

Liu
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Control 
System

Summary and Next Steps

• We are developing a “smart” in-situ sensor web for validation of satellite
data using a spatially and temporally sparse network via a control
system

– Control system is guided by optimization criteria derived from physics-
based sensor models and physics-based dynamic system evolution models

– Soil moisture dynamics currently implemented for depth variations; under
development for lateral variations

• The outcome can directly benefit SMAP and other decadal survey
missions

• Control strategy is formulated and implemented for a low-dimensional
system; numerical implementation for higher-D systems is on-going

• End-to-end system is being implemented in lab; demonstrated for low-
D, under development for higher-D and high-efficiency field-analog
devices

• Low-noise sensor models being investigated in parallel


